Glucose sensor based on glucose oxidase immobilized by zirconium phosphate.

نویسندگان

  • Sejin Park
  • Taek Dong Chung
  • Sun Kil Kang
  • Ran-A Jeong
  • Hankil Boo
  • Hee Chan Kim
چکیده

Amperometric glucose sensors were fabricated using glucose oxidase (GOx) entrapped in zirconium hydrogenphosphate (ZrP), and their performance was evaluated. Reportedly, alpha-ZrP is one of the candidates that are expected to improve the stability of enzymes immobilized on solid surfaces. We intercalated GOxs into ZrP (GOx/ZrP), cast the GOx/ZrP suspension in polyvinylalcohol on a platinum electrode, and dried it in a vacuum oven. The morphological layered structure was investigated by scanning electron microscopy. The enzymatic activities, which were determined by open-circuit potentiometric technique, reached the highest when GOxs were immobilized in ZrP at ca. pH 5. In vitro tests showed good linear responses in the 0-25 mM range and the sensitivity of 0.14 nA mM(-1) at 0.4 V vs. Ag/AgCl. The sensors, as made, were stable for more than 3 days within a limited deterioration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Fabrication of Glucose/O2 Enzymatic Biofuel Cell

Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...

متن کامل

Removal of Malachite Green by Using Immobilized Glucose Oxidase Onto Silica Nanostructure-Coated Silver Metal-Foam

Enzymes Immobilization onto different types of the substrate could be helpful in various applicationsof biomedical devices and biosensors. Enzyme activity and stability could be affected by support andmethod of immobilization. In this study, the silver metal foam was successfully synthesized by thesoft-shell method and then was coated with silica. Then, glucose oxidase (GOx) immobilized on nonc...

متن کامل

Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode.

The direct electrochemistry of glucose oxidase (GOD) adsorbed on a colloidal gold modified carbon paste electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -(449+/-1) mV in 0.1 M pH 5.0 phosphate buffer solution. The response showed a surface-controlled electrode process with an electron transfer rate constant of (38.9+/-5.3)/s determined in t...

متن کامل

Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified...

متن کامل

Immobilization of Glucose oxidase on Meso-porous Glass-ceramic with the Skeleton of CaTi4(PO¬4)6

Microporous glass ceramic with skeleton of CaTi4(PO¬4)6 with average pore size of 12.7 nm has been synthesized and used as a carrier of glucose oxidase. The glass ceramic was prepared by controlled heat treatment of glass samples, which causes the phase separation in their structure and creates CaTi4(PO¬4)6 and β-Ca3(PO4)2 phases. The β-Ca3(PO4)2 phase was dissolved by soaking the glass ceramic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2004